Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 110, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167485

RESUMO

Transmembrane protein 16 F (TMEM16F) is a Ca2+-activated homodimer which functions as an ion channel and a phospholipid scramblase. Despite the availability of several TMEM16F cryogenic electron microscopy (cryo-EM) structures, the mechanism of activation and substrate translocation remains controversial, possibly due to restrictions in the accessible protein conformational space. In this study, we use atomic force microscopy under physiological conditions to reveal a range of structurally and mechanically diverse TMEM16F assemblies, characterized by variable inter-subunit dimerization interfaces and protomer orientations, which have escaped prior cryo-EM studies. Furthermore, we find that Ca2+-induced activation is associated to stepwise changes in the pore region that affect the mechanical properties of transmembrane helices TM3, TM4 and TM6. Our direct observation of membrane remodelling in response to Ca2+ binding along with additional electrophysiological analysis, relate this structural multiplicity of TMEM16F to lipid and ion permeation processes. These results thus demonstrate how conformational heterogeneity of TMEM16F directly contributes to its diverse physiological functions.


Assuntos
Anoctaminas , Canais Iônicos , Anoctaminas/metabolismo , Canais Iônicos/metabolismo , Fenômenos Eletrofisiológicos , Proteínas de Transferência de Fosfolipídeos/metabolismo , Lipídeos , Cálcio/metabolismo
2.
Chem Senses ; 482023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36744918

RESUMO

The Ca2+-activated Cl¯ channel TMEM16B carries up to 90% of the transduction current evoked by odorant stimulation in olfactory sensory neurons and control the number of action potential firing and therefore the length of the train of action potentials. A loss of function approach revealed that TMEM16B is required for olfactory-driven behaviors such as tracking unfamiliar odors. Here, we used the electro-olfactogram (EOG) technique to investigate the contribution of TMEM16B to odorant transduction in the whole olfactory epithelium. Surprisingly, we found that EOG responses from Tmem16b knock out mice have a bigger amplitude compared to those of wild type. Moreover, the kinetics of EOG responses is faster in absence of TMEM16B, while the ability to adapt to repeated stimulation is altered in knock out mice. The larger EOG responses in Tmem16b knock out may be the results of the removal of the clamping and/or shunting action of the Ca2+-activated Cl¯ currents leading to the paradox of having smaller transduction current but larger generator potential.


Assuntos
Anoctaminas , Neurônios Receptores Olfatórios , Animais , Camundongos , Anoctaminas/genética , Cálcio/metabolismo , Camundongos Knockout , Mucosa Olfatória/metabolismo , Neurônios Receptores Olfatórios/metabolismo
3.
Cell Death Dis ; 13(8): 705, 2022 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-35963860

RESUMO

Seizures represent a frequent symptom in gliomas and significantly impact patient morbidity and quality of life. Although the pathogenesis of tumor-related seizures is not fully understood, accumulating evidence indicates a key role of the peritumoral microenvironment. Brain cancer cells interact with neurons by forming synapses with them and by releasing exosomes, cytokines, and other small molecules. Strong interactions among neurons often lead to the synchronization of their activity. In this paper, we used an in vitro model to investigate the role of exosomes released by glioma cell lines and by patient-derived glioma stem cells (GSCs). The addition of exosomes released by U87 glioma cells to neuronal cultures at day in vitro (DIV) 4, when neurons are not yet synchronous, induces synchronization. At DIV 7-12 neurons become highly synchronous, and the addition of the same exosomes disrupts synchrony. By combining Ca2+ imaging, electrical recordings from single neurons with patch-clamp electrodes, substrate-integrated microelectrode arrays, and immunohistochemistry, we show that synchronization and de-synchronization are caused by the combined effect of (i) the formation of new neuronal branches, associated with a higher expression of Arp3, (ii) the modification of synaptic efficiency, and (iii) a direct action of exosomes on the electrical properties of neurons, more evident at DIV 7-12 when the threshold for spike initiation is significantly reduced. At DIV 7-12 exosomes also selectively boost glutamatergic signaling by increasing the number of excitatory synapses. Remarkably, de-synchronization was also observed with exosomes released by glioma-associated stem cells (GASCs) from patients with low-grade glioma but not from patients with high-grade glioma, where a more variable outcome was observed. These results show that exosomes released from glioma modify the electrical properties of neuronal networks and that de-synchronization caused by exosomes from low-grade glioma can contribute to the neurological pathologies of patients with brain cancers.


Assuntos
Neoplasias Encefálicas , Exossomos , Glioma , Neoplasias Encefálicas/patologia , Exossomos/metabolismo , Glioma/patologia , Humanos , Neurônios/patologia , Qualidade de Vida , Convulsões/metabolismo , Microambiente Tumoral
4.
Nanoscale ; 14(30): 10992-11002, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35861380

RESUMO

Neural interfaces enable the monitoring of the state of the brain and its composite cell networks, as well as stimulate them to treat nervous disorders. In addition to their highly efficient charge transduction and stability during operation, the neural electrodes should avoid altering the physiological properties of targeted neuronal tissues. Two-dimensional (2D) MXene materials integrate the advantages of metallic conductivity, high specific-surface area and surface functionality in aqueous dispersions, showing promising potential in neural interface applications. Here, we apply uncoated Ti3C2Tx MXene to interface neuronal development. The impacts of the uncoated Ti3C2Tx MXene interface on neuronal development and neuronal microcircuit activity were tested for the first time. Compared to the standard neuronal culture with a poly-L-ornithine coated coverslip, uncoated Ti3C2Tx MXene surfaces did not affect the cell morphology, density, neuron ratios, maturation or the compositions of the neuronal network. Moreover, calcium imaging, spontaneous postsynaptic currents (sPSCs) and also miniature postsynaptic currents (mPSCs) were recorded to demonstrate that Ti3C2Tx MXene interfaces preserved the basal physiology of neuronal activity. The ability to interface neuronal circuit development without altering neuronal signaling properties enables the construction of MXene-based neural prosthetic devices for neuroscience research, diagnosis, and therapies.


Assuntos
Neurônios , Condutividade Elétrica , Eletrodos , Neurônios/metabolismo
5.
Sci Rep ; 12(1): 11447, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794236

RESUMO

Recent data show that Stomatin-like protein 3 (STOML3), a member of the stomatin-domain family, is expressed in the olfactory sensory neurons (OSNs) where it modulates both spontaneous and evoked action potential firing. The protein family is constituted by other 4 members (besides STOML3): STOM, STOML1, STOML2 and podocin. Interestingly, STOML3 with STOM and STOML1 are expressed in other peripheral sensory neurons: dorsal root ganglia. In here, they functionally interact and modulate the activity of the mechanosensitive Piezo channels and members of the ASIC family. Therefore, we investigated whether STOM and STOML1 are expressed together with STOML3 in the OSNs and whether they could interact. We found that all three are indeed expressed in ONSs, although STOML1 at very low level. STOM and STOML3 share a similar expression pattern and STOML3 is necessary for STOM to properly localize to OSN cilia. In addition, we extended our investigation to podocin and STOML2, and while the former is not expressed in the olfactory system, the latter showed a peculiar expression pattern in multiple cell types. In summary, we provided a first complete description of stomatin-domain protein family in the olfactory system, highlighting the precise compartmentalization, possible interactions and, finally, their functional implications.


Assuntos
Proteínas do Tecido Nervoso , Neurônios Receptores Olfatórios , Potenciais de Ação , Gânglios Espinais/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Células Receptoras Sensoriais/metabolismo
6.
eNeuro ; 9(3)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35487703

RESUMO

Adaptation plays an important role in sensory systems as it dynamically modifies sensitivity to allow the detection of stimulus changes. The vomeronasal system controls many social behaviors in most mammals by detecting pheromones released by conspecifics. Stimuli activate a transduction cascade in vomeronasal neurons that leads to spiking activity. Whether and how these neurons adapt to stimuli is still debated and largely unknown. Here, we measured short-term adaptation performing current-clamp whole-cell recordings by using diluted urine as a stimulus, as it contains many pheromones. We measured spike frequency adaptation in response to repeated identical stimuli of 2-10 s duration that was dependent on the time interval between stimuli. Responses to paired current steps, bypassing the signal transduction cascade, also showed spike frequency adaptation. We found that voltage-gated Na+ channels in VSNs undergo slow inactivation processes. Furthermore, recovery from slow inactivation of voltage-gated Na+ channels occurs in several seconds, a time scale similar to that measured during paired-pulse adaptation protocols, suggesting that it partially contributes to short-term spike frequency adaptation. We conclude that vomeronasal neurons do exhibit a time-dependent short-term spike frequency adaptation to repeated natural stimuli and that slow inactivation of Na+ channels contributes to this form of adaptation. These findings not only increase our knowledge about adaptation in the vomeronasal system, but also raise the question of whether slow inactivation of Na+ channels may play a role in other sensory systems.


Assuntos
Canais de Sódio , Órgão Vomeronasal , Potenciais de Ação/fisiologia , Animais , Mamíferos/metabolismo , Técnicas de Patch-Clamp , Feromônios , Células Receptoras Sensoriais/metabolismo , Sódio/metabolismo , Canais de Sódio/fisiologia , Órgão Vomeronasal/fisiologia
7.
Int J Mol Sci ; 23(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35216275

RESUMO

The functional characterization of the TMEM16 protein family unexpectedly brought together two different research fields in membrane biology: anion channel and membrane lipid organization [...].


Assuntos
Cálcio/metabolismo , Canais de Cloreto/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Fosfolipídeos/metabolismo , Animais , Membrana Celular/metabolismo , Humanos , Lipídeos de Membrana/metabolismo
8.
Trends Pharmacol Sci ; 42(12): 979-980, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34696895

RESUMO

The calcium-activated chloride channel TMEM16A is involved in several physiological processes and is an important pharmacological target. Dinsdale and colleagues recently unveiled several residues in the outer pore region that constitute a critical site for the design of drugs that modulate TMEM16A channels.


Assuntos
Cálcio , Canais de Cloreto , Anoctamina-1 , Humanos
9.
eNeuro ; 8(5)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34433575

RESUMO

The mouse vomeronasal system controls several social behaviors. Pheromones and other social cues are detected by sensory neurons in the vomeronasal organ (VNO). Stimuli activate a transduction cascade that leads to membrane potential depolarization, increase in cytosolic Ca2+ level, and increased firing. The Ca2+-activated chloride channels TMEM16A and TMEM16B are co-expressed within microvilli of vomeronasal neurons, but their physiological role remains elusive. Here, we investigate the contribution of each of these channels to vomeronasal neuron firing activity by comparing wild-type (WT) and knock-out (KO) mice. Performing loose-patch recordings from neurons in acute VNO slices, we show that spontaneous activity is modified by Tmem16a KO, indicating that TMEM16A, but not TMEM16B, is active under basal conditions. Upon exposure to diluted urine, a rich source of mouse pheromones, we observe significant changes in activity. Vomeronasal sensory neurons (VSNs) from Tmem16a cKO and Tmem16b KO mice show shorter interspike intervals (ISIs) compared with WT mice, indicating that both TMEM16A and TMEM16B modulate the firing pattern of pheromone-evoked activity in VSNs.


Assuntos
Feromônios , Órgão Vomeronasal , Potenciais de Ação , Animais , Camundongos , Camundongos Knockout , Células Receptoras Sensoriais
10.
Int J Mol Sci ; 22(16)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34445284

RESUMO

TMEM16F is involved in several physiological processes, such as blood coagulation, bone development and virus infections. This protein acts both as a Ca2+-dependent phospholipid scramblase and a Ca2+-activated ion channel but several studies have reported conflicting results about the ion selectivity of the TMEM16F-mediated current. Here, we have performed a detailed side-by-side comparison of the ion selectivity of TMEM16F using the whole-cell and inside-out excised patch configurations to directly compare the results. In inside-out configuration, Ca2+-dependent activation was fast and the TMEM16F-mediated current was activated in a few milliseconds, while in whole-cell recordings full activation required several minutes. We determined the relative permeability between Na+ and Cl¯ (PNa/PCl) using the dilution method in both configurations. The TMEM16F-mediated current was highly nonselective, but there were differences depending on the configuration of the recordings. In whole-cell recordings, PNa/PCl was approximately 0.5, indicating a slight preference for Cl¯ permeation. In contrast, in inside-out experiments the TMEM16F channel showed a higher permeability for Na+ with PNa/PCl reaching 3.7. Our results demonstrate that the time dependence of Ca2+ activation and the ion selectivity of TMEM16F depend on the recording configuration.


Assuntos
Anoctaminas/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Animais , Ânions/metabolismo , Anoctaminas/genética , Cátions/metabolismo , Cloretos/metabolismo , Células HEK293 , Humanos , Transporte de Íons , Camundongos , Permeabilidade , Proteínas de Transferência de Fosfolipídeos/genética , Sódio/metabolismo
11.
J Physiol ; 599(15): 3697-3714, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34089532

RESUMO

KEY POINTS: Taste transduction occurs in taste buds in the tongue epithelium. The Ca2+ -activated Cl- channels TMEM16A and TMEM16B play relevant physiological roles in several sensory systems. Here, we report that TMEM16A, but not TMEM16B, is expressed in the apical part of taste buds. Large Ca2+ -activated Cl- currents blocked by Ani-9, a selective inhibitor of TMEM16A, are measured in type I taste cells but not in type II or III taste cells. ATP indirectly activates Ca2+ -activated Cl- currents in type I cells through TMEM16A channels. These results indicate that TMEM16A is functional in type I taste cells and contribute to understanding the largely unknown physiological roles of these cells. ABSTRACT: The Ca2+ -activated Cl- channels TMEM16A and TMEM16B have relevant roles in many physiological processes including neuronal excitability and regulation of Cl- homeostasis. Here, we examined the presence of Ca2+ -activated Cl- channels in taste cells of mouse vallate papillae by using immunohistochemistry and electrophysiological recordings. By using immunohistochemistry we showed that only TMEM16A, and not TMEM16B, was expressed in taste bud cells where it largely co-localized with the inwardly rectifying K+ channel KNCJ1 in the apical part of type I cells. By using whole-cell patch-clamp recordings in isolated cells from taste buds, we measured an average current of -1083 pA at -100 mV in 1.5 µm Ca2+ and symmetrical Cl- in type I cells. Ion substitution experiments and blockage by Ani-9, a specific TMEM16A channel blocker, indicated that Ca2+ activated anionic currents through TMEM16A channels. We did not detect any Ca2+ -activated Cl- currents in type II or III taste cells. ATP is released by type II cells in response to various tastants and reaches type I cells where it is hydrolysed by ecto-ATPases. Type I cells also express P2Y purinergic receptors and stimulation of type I cells with extracellular ATP produced large Ca2+ -activated Cl- currents blocked by Ani-9, indicating a possible role of TMEM16A in ATP-mediated signalling. These results provide a definitive demonstration that TMEM16A-mediated currents are functional in type I taste cells and provide a foundation for future studies investigating physiological roles for these often-neglected taste cells.


Assuntos
Anoctamina-1/metabolismo , Papilas Gustativas , Animais , Cálcio/metabolismo , Canais de Cloreto , Camundongos , Técnicas de Patch-Clamp , Receptores Purinérgicos P2Y , Papilas Gustativas/metabolismo
12.
eNeuro ; 8(2)2021.
Artigo em Inglês | MEDLINE | ID: mdl-33637538

RESUMO

Stomatin-like protein-3 (STOML3) is an integral membrane protein expressed in the cilia of olfactory sensory neurons (OSNs), but its functional role in this cell type has never been addressed. STOML3 is also expressed in dorsal root ganglia neurons, where it has been shown to be required for normal touch sensation. Here, we extended previous results indicating that STOML3 is mainly expressed in the knob and proximal cilia of OSNs. We additionally showed that mice lacking STOML3 have a morphologically normal olfactory epithelium. Because of its presence in the cilia, together with known olfactory transduction components, we hypothesized that STOML3 could be involved in modulating odorant responses in OSNs. To investigate the functional role of STOML3, we performed loose patch recordings from wild-type (WT) and Stoml3 knock-out (KO) OSNs. We found that spontaneous mean firing activity was lower with additional shift in interspike intervals (ISIs) distributions in Stoml3 KOs compared with WT neurons. Moreover, the firing activity in response to stimuli was reduced both in spike number and duration in neurons lacking STOML3 compared with WT neurons. Control experiments suggested that the primary deficit in neurons lacking STOML3 was at the level of transduction and not at the level of action potential generation. We conclude that STOML3 has a physiological role in olfaction, being required for normal sensory encoding by OSNs.


Assuntos
Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Neurônios Receptores Olfatórios , Olfato , Animais , Cílios , Camundongos , Mucosa Olfatória
13.
Cell Tissue Res ; 383(1): 429-443, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33447881

RESUMO

Odor perception begins with the detection of odorant molecules by the main olfactory epithelium located in the nasal cavity. Odorant molecules bind to and activate a large family of G-protein-coupled odorant receptors and trigger a cAMP-mediated transduction cascade that converts the chemical stimulus into an electrical signal transmitted to the brain. Morever, odorant receptors and cAMP signaling plays a relevant role in olfactory sensory neuron development and axonal targeting to the olfactory bulb. This review will first explore the physiological response of olfactory sensory neurons to odorants and then analyze the different components of cAMP signaling and their different roles in odorant detection and olfactory sensory neuron development.


Assuntos
AMP Cíclico/metabolismo , Neurônios Receptores Olfatórios/fisiologia , Animais , Roedores
14.
Biomaterials ; 257: 120177, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32682149

RESUMO

Microglia are highly plastic cells that change their properties in response to their microenvironment. By using immunofluorescence, live-cell imaging, electrophysiological recordings and RNA sequencing, we investigated the regulation of modified bacterial cellulose (mBC) nanofibril substrates on microglial properties. We demonstrate that mBC substrates induce ramified microglia with constantly extending and retracting processes, reminiscent of what is observed in vivo. Patch-clamp recordings show that microglia acquire a more negative resting membrane potential and have increased inward rectifier K+ currents, caused by an upregulation of Kir2.1 channels. Transcriptome analysis shows upregulation of genes involved in the immune response and downregulation of genes linked to cell adhesion and cell motion. Furthermore, Arp2/3 complex activation and integrin-mediated signaling modulate microglial morphology and motility. Our studies demonstrate that mBC nanofibril substrates modulate microglial phenotype, paving the way for a microglia-material interface that may be very valuable for anti-neuroinflammatory drug screening.


Assuntos
Microglia , Transdução de Sinais , Potenciais da Membrana , Fenótipo , Regulação para Cima
15.
Front Neurosci ; 14: 440, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32508565

RESUMO

The sense of smell has been shown to deteriorate in patients with some neurodegenerative disorders. In Parkinson's disease (PD) and Alzheimer's disease (AD), decreased ability to smell is associated with early disease stages. Thus, olfactory neurons in the nose and olfactory bulb (OB) may provide a window into brain physiology and pathophysiology to address the pathogenesis of neurodegenerative diseases. Because nasal olfactory receptor neurons regenerate throughout life, the olfactory system offers a broad variety of cellular mechanisms that could be altered in AD, including odorant receptor expression, neurogenesis and neurodegeneration in the olfactory epithelium, axonal targeting to the OB, and synaptogenesis and neurogenesis in the OB. This review focuses on pathophysiological changes in the periphery of the olfactory system during the progression of AD in mice, highlighting how the olfactory epithelium and the OB are particularly sensitive to changes in proteins and enzymes involved in AD pathogenesis. Evidence reviewed here in the context of the emergence of other typical pathological changes in AD suggests that olfactory impairments could be used to understand the molecular mechanisms involved in the early phases of the pathology.

16.
Sci Rep ; 9(1): 8834, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31222082

RESUMO

Bitter and sweet receptors (T2Rs and T1Rs) are expressed in many extra-oral tissues including upper and lower airways. To investigate if bitter tastants and artificial sweeteners could activate physiological responses in tracheal epithelial cells we performed confocal Ca2+ imaging recordings on acute tracheal slices. We stimulated the cells with denatonium benzoate, a T2R agonist, and with the artificial sweeteners sucralose, saccharin and acesulfame-K. To test cell viability we measured responses to ATP. We found that 39% of the epithelial cells responding to ATP also responded to bitter stimulation with denatonium benzoate. Moreover, artificial sweeteners activated different percentages of the cells, ranging from 5% for sucralose to 26% for saccharin, and 27% for acesulfame-K. By using carbenoxolone, a gap junction blocker, we excluded that responses were mainly mediated by Ca2+ waves through cell-to-cell junctions. Pharmacological experiments showed that both denatonium and artificial sweeteners induced a PLC-mediated release of Ca2+ from internal stores. In addition, bitter tastants and artificial sweeteners activated a partially overlapping subpopulation of tracheal epithelial cells. Our results provide new evidence that a subset of ATP-responsive tracheal epithelial cells from rat are activated by both bitter tastants and artificial sweeteners.


Assuntos
Células Epiteliais/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Edulcorantes/farmacologia , Paladar/fisiologia , Traqueia/citologia , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Células Epiteliais/efeitos dos fármacos , Ratos , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Sacarina/farmacologia , Sacarose/análogos & derivados , Sacarose/farmacologia , Tiazinas/farmacologia , Traqueia/diagnóstico por imagem
17.
J Gen Physiol ; 151(7): 954-966, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31048412

RESUMO

Glial-like supporting (or sustentacular) cells are important constituents of the olfactory epithelium that are involved in several physiological processes such as production of endocannabinoids, insulin, and ATP and regulation of the ionic composition of the mucus layer that covers the apical surface of the olfactory epithelium. Supporting cells express metabotropic P2Y purinergic receptors that generate ATP-induced Ca2+ signaling through the activation of a PLC-mediated cascade. Recently, we reported that a subpopulation of supporting cells expresses also the Ca2+-activated Cl- channel TMEM16A. Here, we sought to extend our understanding of a possible physiological role of this channel in the olfactory system by asking whether Ca2+ can activate Cl- currents mediated by TMEM16A. We use whole-cell patch-clamp analysis in slices of the olfactory epithelium to measure dose-response relations in the presence of various intracellular Ca2+ concentrations, ion selectivity, and blockage. We find that knockout of TMEM16A abolishes Ca2+-activated Cl- currents, demonstrating that TMEM16A is essential for these currents in supporting cells. Also, by using extracellular ATP as physiological stimuli, we found that the stimulation of purinergic receptors activates a large TMEM16A-dependent Cl- current, indicating a possible role of TMEM16A in ATP-mediated signaling. Altogether, our results establish that TMEM16A-mediated currents are functional in olfactory supporting cells and provide a foundation for future work investigating the precise physiological role of TMEM16A in the olfactory system.


Assuntos
Potenciais de Ação , Anoctamina-1/metabolismo , Mucosa Olfatória/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Cloretos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mucosa Olfatória/fisiologia , Receptores Purinérgicos/metabolismo
18.
eNeuro ; 5(4)2018.
Artigo em Inglês | MEDLINE | ID: mdl-30105301

RESUMO

Sensory adaptation is a source of experience-dependent feedback that impacts responses to environmental cues. In the mammalian main olfactory system (MOS), adaptation influences sensory coding at its earliest processing stages. Sensory adaptation in the accessory olfactory system (AOS) remains incompletely explored, leaving many aspects of the phenomenon unclear. We investigated sensory adaptation in vomeronasal sensory neurons (VSNs) using a combination of in situ Ca2+ imaging and electrophysiology. Parallel studies revealed prominent short-term sensory adaptation in VSNs upon repeated stimulation with mouse urine and monomolecular bile acid ligands at interstimulus intervals (ISIs) less than 30 s. In such conditions, Ca2+ signals and spike rates were often reduced by more than 50%, leading to dramatically reduced chemosensory sensitivity. Short-term adaptation was reversible over the course of minutes. Population Ca2+ imaging experiments revealed the presence of a slower form of VSN adaptation that accumulated over dozens of stimulus presentations delivered over tens of minutes. Most VSNs showed strong adaptation, but in a substantial VSN subpopulation adaptation was diminished or absent. Investigation of same- and opposite-sex urine responses in male and female VSNs revealed that adaptation to same-sex cues occurred at ISIs up to 180 s, conditions that did not induce adaptation to opposite-sex cues. This result suggests that VSN sensory adaptation can be modulated by sensory experience. These studies comprehensively establish the presence of VSN sensory adaptation and provide a foundation for future inquiries into the molecular and cellular mechanisms of this phenomenon and its impact on mammalian behavior.


Assuntos
Adaptação Fisiológica/fisiologia , Células Receptoras Sensoriais/fisiologia , Olfato/fisiologia , Órgão Vomeronasal/fisiologia , Animais , Cálcio/metabolismo , Fenômenos Eletrofisiológicos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal
19.
Channels (Austin) ; 11(5): 399-414, 2017 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-28301269

RESUMO

Ca2+-activated Cl- currents have been implicated in many cellular processes in different cells, but for many years, their molecular identity remained unknown. Particularly intriguing are Ca2+-activated Cl- currents in olfactory transduction, first described in the early 90s. Well characterized electrophysiologically, they carry most of the odorant-induced receptor current in the cilia of olfactory sensory neurons (OSNs). After many attempts to determine their molecular identity, TMEM16B was found to be abundantly expressed in the cilia of OSNs in 2009 and having biophysical properties like those of the native olfactory channel. A TMEM16B knockout mouse confirmed that TMEM16B was indeed the olfactory Cl- channel but also suggested a limited role in olfactory physiology and behavior. The question then arises of what the precise role of TMEM16b in olfaction is. Here we review the long story of this channel and its possible roles.


Assuntos
Anoctaminas/metabolismo , Cálcio/metabolismo , Olfato , Animais , Anoctaminas/genética , Humanos , Camundongos Knockout , Neurônios Receptores Olfatórios/metabolismo
20.
PLoS One ; 12(1): e0169572, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28046119

RESUMO

TMEM16A and TMEM16B encode for Ca2+-activated Cl- channels (CaCC) and are expressed in many cell types and play a relevant role in many physiological processes. Here, I performed a site-directed mutagenesis study to understand the molecular mechanisms of ion permeation of TMEM16B. I mutated two positive charged residues R573 and K540, respectively located at the entrance and inside the putative channel pore and I measured the properties of wild-type and mutant TMEM16B channels expressed in HEK-293 cells using whole-cell and excised inside-out patch clamp experiments. I found evidence that R573 and K540 control the ion permeability of TMEM16B depending both on which side of the membrane the ion substitution occurs and on the level of channel activation. Moreover, these residues contribute to control blockage or activation by permeant anions. Finally, R573 mutation abolishes the anomalous mole fraction effect observed in the presence of a permeable anion and it alters the apparent Ca2+-sensitivity of the channel. These findings indicate that residues facing the putative channel pore are responsible both for controlling the ion selectivity and the gating of the channel, providing an initial understanding of molecular mechanism of ion permeation in TMEM16B.


Assuntos
Cálcio/metabolismo , Canais de Cloreto/metabolismo , Proteínas de Membrana/metabolismo , Ânions/metabolismo , Anoctamina-1 , Anoctaminas , Eletrofisiologia , Células HEK293 , Humanos , Ativação do Canal Iônico , Mutagênese Sítio-Dirigida , Mutação , Proteínas de Neoplasias/metabolismo , Técnicas de Patch-Clamp , Permeabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...